09.Escape Noise

Escape Noise

Escape noise

Two ways to introduce noise in formal spiking neuron models:

  • noisy threshold(escape model or hazard model)
  • noisy integration(stochastic spike arrival model or diffusion model)

In the escape model, the neuron may fire when u<ϑ the neuron may stay quiescent when u>ϑ

Escape rate and hazard function

In the escape model, spikes can occur at any time with a probability density,

ρ=f(uϑ)

Since u is a function of time,ρ is also time dependent,

ρI(t|t^)=f[u(t|t^)ϑ]

Required condition of function f, when u, f0

Example

f(uϑ)={0foru<ϑ Δ1foruϑ

f(uϑ)=1τ0

$$f(u-\vartheta)=\beta[u-\vartheta]_{+}=\big{0foru<ϑ β(uϑ)foruϑ$$

f(uϑ)=12Δ[1+erf(uϑ2σ)]

erf(x)=2π0xexp(y2)dy

Interval distribution and mean fire rate

the expect value of interval distribution = 1mean fire rate = mean period

use ρ we can get interval distribution,

PI(t|t^)=ρ exp[t^tρdt]

ρ=f[u(t|t^)ϑ]

use SRM0,

u(t|t^)=η(tt^)+h(t)

h(t)=0κ(s)I(ts)ds

use non-leaky integrate-and-fire,

u(t|t^)=ur+1Ct^tI(t)dt

use leaky integrate-and-fire,

u(t|t^)=RI0[1e(tt^)/τm]

use SRM0 with periodic input,we get periodic response,

h(t)=h0+h1cos(Ωt+φ1)

η(s)={fors<Δabs η0exp(sΔabsτ)fors>Δabs

Planted: by ;

Current Ref:

  • snm/12.escape_noise.md